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The main element of the proposed approach to constructing a theory of the stability of canonical systems is an index function 
(defined below), which contains all the necessary information on the system. The fundamental results of existing theory, in 
particular, the necessary and sufficient condition for strong stability, are expressed in new terms. The corresponding proofs only 
use simple mathematical means; moreover, they are much shorter than existing proofs. A number of new assertions are established, 
in particular, a simple sufficient condition for strong stability is obtained, which essentially generalizes the well-known Yakubovich 
theorem [t] of the directed width of the stability regions, and the necessary and sufficient condition for their directed convexity 
is obtained. Using them, certain non-local qualitative results on the regions of stability of parametric oscillations of canonical 
systems are established (which enable, in particular, the existing practice of constructing stability regions in accordance with their 
boundaries to be justified), and the conditions for high-frequency parametric stabilization of unstable systems are obtained. 
© 2004 Elsevier Ltd. All rights reserved. 

The theory of the stability of linear canonical systems with periodic coefficients, which had its origin 
in the publications of Lyapunov [2] and Poincar6 [3], has found numerous applications in mechanics, 
the theory of automatic control, problems of the dynamic stability of elastic systems and other areas 
of science and technology. The basis of the modern theory is the division of the multipliers into genera, 
introduced by Krein [4], and the Gel'fand-Lidskii theorem on the structure of the stability regions [5]. 
Unfortunately, the proofs of many of the theorems are extremely laborious and use quite complex 
mathematical apparatus, which make them inaccessible for researchers and developers. As a result, when 
analysing specific systems, only constructive methods (numerical or asymptotic) are usually employed, 
and the remarkable qualitative results of the theory remain largely unrecognized. Nevertheless, it is 
precisely the qualitative results that provide the greatest understanding of the problem; they often 
enable one to draw interesting conclusions regarding the stability of a system even in those cases 
when its parameters are only known approximately (and when constructive methods are practically 
useless). 

1. 

Consider a system of 2n linear differential equations of the form 

J~t = H(t)x, x E R 2n 

h t 2n H(t) = n ( t + T )  = II ,k( ){[~.k=~, J = 

T H E  M A I N  I D E A S  A N D  D E F I N I T I O N S  

I1o 'nFF ,o (1.1) 

where In is the identity matrix of order n, and H(t) is a symmetrical real piecewise-continuous T-periodic 
matrix. Before describing the results we will recall some fundamental ideas and definitions, relating to 
Eq. (1.1). 

System (1.1) is said to be stable if all its solutions are bounded as t ~ ~o. Strongly stable systems, 
which retain their stability for small perturbations of the Hamiltonian H(t), are of interest for 

?Prikl. Mat. Mekh. Vol. 68, No. 2, pp. 206-224, 2004. 

183 



184 A.A.  Zevin 

applications. In a mathematical formulation this means that, in a strongly stable system, there is an 
> 0 such that Eq. (1.1) with any symmetric matrix Hi(t) is also strongly stable, so long as IHl(t) - 

H(t)] < e, where ]A I is the norm of the matrixA. 
Suppose X(t) is a matrix, the columns of which consist of 2n linearly independent solutions of 

Eq. (1.1). The eigenvalues 9k (k = 1 . . . .  ,2n)  of the matrixX(T) are called multipliers of the system. 
To each simple multiplier Pk there corresponds a solution of the form 

Xk(t) = exp(o~d)fk(t); a k = (lnpk)/T, fk(t+ T) = fk(t) (1.2) 

where % are characteristic exponents of the system. 
If all the multipliers are simple, system (1.1) has 2n linearly independent solutions of the form (1.2). 

The same situation also arises in the case of multiple multipliers, if the elementary divisors of the matrix 
X(T) are simple (i.e. the number of eigenvectors of the matrix X(T), corresponding to each multiplier 
Ok is equal to its multiplicity rk when considered as a root of the characteristic equation detl[X(T) - 
pI2~ [1 = 0). In the case of a multiple multiplier Pk with non-simple elementary divisors, in addition to 
the solution of the form (1.2) there are solutions of the form 

xk(t ) = exp(~kt)P~(t ) (1.3) 

where Pk(t) are polynomials with T-periodic coefficients. 
Since Eq. (1.1) is real, in addition to complex multipliers Pi there is also a conjugate multiplier p*. 

If ] pi] g 1, there is also a multiplier 1/pi (the Lyapunov-Poincar6 theorem). It follows from expressions 
(1.2), (1.3) and the Lyapunov-Poincar6 theorem, that all these solutions are bounded as t ~ ~ (i.e. 
the system is stable), provided all the multipliers lie on the unit circle and all the elementary divisors 
of the matrix X(T) are simple. 

For any solutions xi(t) and xk(t) of Eq. (1.1), we have the identity 

(X i ( t ) ,  J x k ( t ) )  -- Cik = const (1.4) 

where (a, b) is the scalar product of the vectors a and b. 
By virtue of expressions (1.2) and (1.3) the left-hand side of identity (1.4) contains the factor 

exp[o~i + ~ ) t ] ,  and hence this is possible provided 

(xi(t), JXk(t)) = 0 when ct i + t~" * 0 (1.5) 

As follows from identity (1.4), any matrix of the solutions of the canonical equation satisfies the relation 

[I [[2. X(t)'JX(t) = C = Cik i,k= 1 (1.6) 

where the prime denotes transposition. 
For a real non-singular matrix X(t) the inverse assertion holds [5], namely, if the matrix X(t) satisfies 

relation (1.6), it is a solution of a certain canonical system (1.1) with Hamiltonian 

A(t) = J~2(t)X-l(t) (1.7) 

We will show that this conclusion also holds for the matrix X(t), also containing pairwise conjugate 
complex columns xk(t) = X*k + fit) = uk(t) + irk(t). In fact, compiling the matrix Xfft) from the real 
columns xi(t) and the functions uk(t) and 10k(t), we obtain that it satisfies relation (1.6) and is therefore 
a solution of the canonical equation with HamiltonianAl(t)  = JXl(t)X~l(t). But the matrixX(t), being 
a linear combination of the columns of Xl(t), also serves as a solution of this equation, and hence 
Al(t ) = J2(t)X-l(t) .  

2. P R E L I M I N A R Y  R E S U L T S  

We will first establish some subsidiary results. Consider the boundary-value problem 

Jx + 2~mT-lx = ~R(t)x, x(T) = exp(iq0)x(0) 

R(t) = H(t) + 2gmT-112n 
(2.1) 
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where m is an integer such that R(t) > 0 when t s [0, 7]. It is obvious that this inequality is satisfied if 
m > -h(t)T/(2=), where h(t) is the least eigenvalue of the matrix H(t). If H(t) > 0, then h(t) > 0, and 
we can take m = 0, in which case R(t) = H(t). 

Since the matrix R(t) is symmetrical, problem (2.1) is self-conjugate; by virtue of the fact that 
R(t) > 0 its eigenvalues )~i (i = 1, 2, ...) are real, and the corresponding eigenfunctions satisfy the 
relation [1] 

T 

~(R(t)xi(t),  xl~(t))dt = 0 when )~i ~ ~'k (2.2) 
0 

Boundary condition (2.1) depends analytically on % and hence ki(q)) and the eigenfunctions xi(t, q~) 
are analytic in % 

When )~ = 1 Eq. (2.1) is identical with (1.1). Hence, if )~i(%) = 1 for certain i and %, Eq. (1.1) has 
the multiplier P = exp(/q~k) (which can also be multiple, even if the eigenvalue ~/(%) is simple). Hence, 
points at which the graphs of the functions ~(q~) intersect or are tangent to the straight line k = i indicate 
the position of the multipliers of Eq. (1.1) on the unit circle. Thus, in the situation represented in 
Fig. 1, four multipliers lie on the upper semicircle (as follows from later results, multipliers at the points 
qh and q)3 are simple, and at the point q~2 and q~4 they are multiple). 

Suppose Pk = expq~pk) is a multiplier of multiplicity r > 1 with simple elementary divisors. Then 
boundary-value problem (2.1) when q~ = q)k has an r-tuple eigenvalue )~ = 1. Suppose )~p(q~) ( p  = 
1, . . . ,  r) are the corresponding analytic functions 0~p(%) = 1); we will put kp~(%) = d~p(q~)/dq~[ ~ = ~.  

L e m m a  1. The following inequality holds 

~.p~0(q~k)#0, p = 1 . . . . .  r (2.3) 

f~(t) = ~f.(t, ~)/a~l, = ~ 

Proof. The eigenfunction xp(t, 9) = exp(iq~t/T)fp(t, tp) corresponds to the eigenvalue kp(q~) (p = 1 . . . . .  r), where 
fp(t, ¢p) = fp(t + T, q)). Substituting Xp(t, 9) into Eq. (2.1), we obtain 

Jfp  + 2 ~ m T - l f p  = ~ ,pRfp-  itpT-I j f p  (2.4) 

Differentiating relation (2.4) with respect to cp and taking into account the equation kp(~0k) = 1, we obtain that 
satisfies the equation 

where 

Jfp+ + 2 x m T - l f p ~  = Rfmp - iq~kT-IJfp, + p(t) 

p(t) = - iT-4Jfp(t, q~k) + )~p+R(t)fp(t, %) 

In homogeneous equation (2.5) has a T-periodic solution provided that 

T 
S(p( t  ) , zp( t ) )d t  = O, p = 1,2 . . . .  
0 

where Zp(t) are T-periodic solutions of the homogeneous conjugate equation 

= -H(t)Jz - iq)kT-Iz 

(2.5) 

(2.6) 

(2.7) 
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It can be shown by direct substitution that Eq. (2.7) has the solutions Zp = Jfp(t) (p = 1 . . . . .  r), and hence from 
condition (2.6), taking the equality (fp,/Jfp) = const into account, we obtain 

~,p~ = (fp,  iJfp) (Rfp, fp)dt (2.8) 
",0 

Note that (fp,/Jfp) is a real number, since 

(fp, iJfp)* = (iJfp, fp) = (fp, iJfp) 

Since the function xp(t, <p) are continuous in % Eq. (2.2) remains true when ~,i(<P) = ~,k(~P) • Hence, we similarly 
obtain from relation (2.8) 

(fp, iJfk) = 0, k ~ p ,  p = 1 .. . . .  r (2.9) 

• " " * i As follows from condition (1.5), (fp, iJfk) = 0 when ctp + c~ k ~ 0, and hence Eq. (2.9) holds for allp ~ k. S nce 
the function ~ cannot be orthogonal to the 2n linearly independent functions Jfk, when have (fp, /Jfp) ~ 0; 
consequently kp~ ¢ 0. 

It follows from this lemma, for example, that non-simple elementary dividers (corresponding to the products 
~,iw(~Pi) = 0) correspond to the multipliers at the points (D2 and (P4 (Fig. 1). 

Remark. As pointed out above, the basis of the existing theory of canonical systems is the division of multipliers 
into genera, introduced by Krien [4]. If, with condition (2.9) (fp,/Jfp) > 0 ((fp,/Jfp) < 0) for allp = 1 . . . .  , r, this 
r-tuple multiplier is called a multiplier of the first (second) kind [5]. As can be seen from expression (2.8), all the 
derivatives of the functions ~,p(<p) (p = 1 . . . . .  r, ~p(%) = 1) at the point % are then correspondingly positive or 
negative (R(t) > 0). Hence, Lemma I gives the division of the multipliers into genera a clear geornetrical meaning. 
However, this classification of the multipliers is not used below, since all the results can be expressed using the 
function kp(9). 

The  following lemma extends L e m m a  1 to the case when the multiplier Pk = exp( i%) of  any 
multiplicity r corresponds to the simple eigenvalue ~i(%) = 1. Since we do not  use it in what  follows 
when analysing stability, we will present  it wi thout  proof.  

Lemma 2. The  following relations hold 

d p 
~L/P~ (tpk) = dq~pLi(tP)l~ = ~k = O, 

r 

p = 1 . . . . .  r -  1, ~,i~(tpk) ¢: 0 (2.10) 

Hence ,  the derivatives of  the funct ion )~i(q0) character ize the multiplicity of  the corresponding 
multipliers (namely, the multiplicity is equal  to the order  of the lowest derivative, not  equal  to zero).  

It follows f rom L e m m a  2, in particular,  that  simple multipliers lie at the points % and % (Fig. 1) 
(the first derivatives of  the functions )~i(q0) at these points are not  equal  to zero).  The  first and second 
derivatives are equal to zero at the points (P2 and (D4 respectively; if the next derivatives a r e  not  equal  
to zero, two multipliers lie at the point  q02 and the three  multipliers lie at the point  %.  

We will assume that  the Hamil tonian  H = H(t, ~) depends  analytically on the pa ramete r  e; then,  for  
fixed % the eigenvalues of  p rob lem (2.1))~p = )~p(~) (p  = 1, 2, ...). Assuming H = H(t, ~), x = xp(t, e), 
)~ = )~p(e) in (2.1) and differentiat ing with respect  to ~, we obtain 

JXpe + 2~mT-lxpe = ~'pRXpe + ~'peRXp + ~'pHeXp (2.11) 

where  

H e = 3H(t ,e) /3e ,  ~,pe = dKp(e)lde, xpe = dxp( t ,e ) lde  

Hence ,  in the same way as when deriving formula  (2.8), we obtain 

)-1 
~,pe = -~,p ~ ( HEx p, Xp)dt~! ( Rxe, xe)d, ) (2.12) 

o 

We will assume that the Hamil tonian increases as e increases; then He(t, e) > 0. By virtue of expression 
(2.12), the positive eigenvalues ?~p(q0, e) decrease as e increases. Suppose )~p(%, e) = 1; it is then  obvious 
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that if the derivative ~,p~(%, e) > 0, then %(~) increases as t increases (i.e. the multiplier 9 = exp(iq~k(e)) 
moves in an anticlockwise direction); otherwise, if ~,p~(%, t)  < 0, %(~) decreases. 

Suppose the multipliers 91 = exp(iq)a) and P2 ----- exp(iq~2) correspond to successive roots of the equation 
~p(q~, t)  = 1, where ~p(q), ~) > 1 when q) ~ (q~l, q~2) (Fig. 2a). Then these multipliers move along the 
unit circle in opposite directions as t increases; if, for a certain a = a0, they meet at a certain point %, 
non-simple elementary divisors will correspond to the corresponding double multiplier 9o (the eigenvalue 

(%, t0) = 1 is simple, and hence one eigenvector will correspond to the eigenvalue P0 of the matrix 
T)). It is obvious that when a increases further in a fairly small neighbourhood of the point % the 

equation ~,p(% ~) = 1 has no roots, i.e. the multipliers considered converge with the circle. 
In Fig. 2(b) the function ~p(q), a) is convex downwards with respect to % When ~ = t0 it touches the 

straight line ~, = 1 at the point %; this indicates that certain multipliers fall on the circle (by virtue of 
Lemma 3 the number of such multipliers r is equal to the order of the lowest non-zero derivative of 
the function ~p(q~, t0) when q~ = %; in the case of a common position r = 2). When e increases further, 
the curve of ~,p(% ~) intersects the straight line ~,= 1 at two points, where the corresponding derivatives 
are not equal to zero. Hence, in accordance with Lemma 3 simple multipliers lie at these points, i.e. 
r - 2 of the coinciding multipliers again converge with the circle. 

It is clear that if the eigenvalue ~(%, e0) = 1 is multiple, the behaviour of the multipliers in the 
neighbourhood of % is determined by each of the corresponding functions ~,p(q~, e) separately. 

Note that these results agree completely with the results on the motion of multipliers when the 
Hamiltonian increases, obtained by Krein and Lyubarskii using different considerations [6]. 

3. T H E  I N D E X  AND I N D E X  F U N C T I O N  OF A S Y S T E M  

Suppose N(q~) is the number of eigenvalues of problem (2.1) in the range (0, 1). The following ideas 
[7, 8] play a key role in the theory. 

Definition. We will call the function 

q(q)) = N(~p)- 2mn (3.1) 

the index function, and the number q = q(0) = N(0) - the 2mn index of the Hamiltonian H(t). 
We first note that the index is independent of m, so long as the inequality R(t) = H(t) + 

27zmT-112~ > 0 is satisfied. The point is that [7, 8], when m increases by unity the number N(q~) increases 
by 2n, and hence the value of q remains unchanged. 

When ~, = ~,p(q~) the corresponding solution Xp(t, q~) satisfies boundary condition (2.1), and hence 
Eq. (2.1) has the multiplier P = exp(iq~). Since there is then also a conjugate multiplier 9* = exp(-i~0), 
we have ~,p(q~) = ~,p(-q)). Consequently, q(q~) ]q(-q)), i.e. q(q)) is an even function and it is therefore 
sufficient to consider it solely in the range [0, ~ .  

It is obvious that the function q(q~) is piecewise-constant, and discontinuities can only occur at those 
points % at which a certain eigenvalue ~,p(%) = 1 or ~p(%) = O. When ?~ = 0 all the multipliers of 
Eq. (2.1) are equal to unity, and hence ~,p(q~) ~ 0 when q~ ~ (0, ~), i.e. discontinuities can only occur 
here at those points % at which there is a multiplier 9k = exp(i%) @p(%) = 1). 

Suppose the eigenvalue ~,(%) = 1 has multiplicity r, andp of the functions ~(q~) at this point decrease 
and r - p  increase. It is obvious that the increment of the index function at this point 

Aq(q~k) = q(q)k + 0) -- q (% - 0) = p - r (3.2) 
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When q0 ~ 0, n positive eigenvalues ki(q)) ~ 0, and hence the function N(q0) is discontinuous at the 
point q0 = 0, even if ~(0)  ~ 1. Here N(+0)  -N(0)  = n and, consequently, the index q = q(+0) - n .  

It Fig. 3 we show, as an example, a graph of the index function corresponding to the functions k/(q0), 
presented in Fig. 1; it was assumed here that q = -n, and therefore q(+0) = 0. 

As is well known, the solution of Eq. (2.1) with initial condition x(0) = x 0 can be represented in the 
form x(t) = W(t, )~)Xo, where W(t, 90 is the matrix of solutions which satisfy the condition W(0, )~) = I2n 
(the matricant). Hence, the eigenvalues ki(q0) (i = 1, 2, . . . )  of problem (2.1) are the roots of the equation 
detll W(T, ) 9 - exp(i~p)lz~ I I = 0. It can be shown that ifH(t) > 0, the number N(~p) is equal to the number 
of zeros ti ~ (0, 1) (taking their multiplicity into account) of the equation det]] W(t, 1) - exp(irp)I2~ II --- 0. 
This result considerably simplifies the calculation of the index function. 

The following result will often be used later. 

Lemma 3. The index function q(q0) increases (does not decrease) when the Hamiltonian increases. 
In fact, by virtue of (2.12), when the Hamiltonian increases the positive eigenvalues of problem (2.1) decrease, 

and hence the Number N(q0) of eigenvalues in the range (0, 1), and together with them the index function also, 
can only increase. 

It follows from Lemma 3, for example, that when the Hamiltonian increases, the point q03 of the index 
function (Fig. 3) moves in the negative direction, while the points qh and q04 move in the positive direction. 

4. THE NECESSARY AND S U F F I C I E N T  C O N D I T I O N  F O R  
S T R O N G  S T A B I L I T Y  

Suppose stable system (1.1) is not strongly stable. Then, by definition, a Hamiltonian, continuous in ~, 
exists, such that, for as a small a value of e > 0 as desired, the system is unstable, i.e. a certain multiplier 
pi(e) does not lie on the unit circle. Since in this case a multiplier pq(E) = 1/9~(e) exists, we have 
limpq(0 = l impi(0 = pi(0) as ~ ~ 0. Hence, this situation is possible only if the multiplier pi(O) is 
mulUple. Consequently, the stable system (1.1) is strongly stable if all the multipliers are simple. 

As Krien showed [4], this sufficient condition, in general, is not necessary. The necessary and sufficient 
conditions for strong stability are established by the Krien-Gel'fand-Lidskii theorem [1]. This theorem 
will be proved below in terms which differ from the classical ones. 

We will assume that Eq. (1.1) is stable. Suppose % (k = 1, ... , l ~< n) are the arguments of the 
multipliers on the upper semicircle (l = n, if all the multipliers are simple). 

Theorem 1. For strong stability of Eq. (1.1) it is necessary and sufficient that 

l 

K = Z [aq(~°k)l = n,  0 < q0t¢ < rc 
k = l  

(4.1) 

Proof. Equation (4.1) obviously implies that on the upper (and, consequently, on the lower) semicircle 
there are n multipliers, and simple elementary dividers correspond to multiple multipliers (as was shown 
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above, these conditions guarantee stability). When condition (4.1) holds, the functions )~i(~P) intersect 
the straight line )~ = 1 n times at (0, ~t), and if ki(%) = ... = ~.i+~-~(q~) = 1 at a certain point %, then 
all the derivatives )~pe(%) (p = i . . . .  , i + r -  1) have the same signs (otherwise I &/(q~k) [ < r and condition 
(4.1) is not satisfied). Hence, taking into account the continuity of the Hamiltonian H(t, ~) and, 
consequently, of the functions Li(q0, e) with respect to e, it follows that for sufficiently small e the number 
of intersections remains equal to n, i.e. stability is maintained. Hence, the sufficiency of condition (4.1) 
is proved. We will show that this is necessary. 

Suppose condition (4.1) is not satisfied in the stable system (K < n). This implies that at a certain 
point % there are derivatives )~i~(%) with different signs and either )~p(0) = 1 or )~p(n) = 1 (i.e. there 
is a multiplier p = 1 or 9 = -1). In the latter cases, at the point q0 = 0 or ¢p = re, there are also derivatives 
)~i~ of different signs (q(cp) = q(-9)  and q(9) = q(2rc - q~)). We will show that when these derivatives 
are present system (1.1) is strongly stable. 

The solutions of the stable system can be represented in the form 

xk(t) = exp(itpkt/T)fk(t ), f t ( t+  T) = ft(t) ,  k = 1 . . . . .  2n (4.2) 

where xk(t) is the eigenfunction of problem (2.1) when ~p = ¢P1,, corresponding to the eigenvalue 
)~ = 1. We will assume, without loss of generality, that xl(t) and x2(t) correspond to the eigenfunctions 
~,l(q~) and )~2(cp), where )~1(q01) = L2(%) = 1, )~ae(q~l) > 0, )~2~(~Pa) < 0. Then, by virtue of relation (2.8), 
we can assume 

(Xl, iJxl)  = (fl, iJf l)  = 1 (X2' iJx2) = (f2, iJf2) = -1 (4.3) 

Suppose X(t) = [xl(t), x 2 ( t ) ,  . . .  , x2n(t)] is the matrix of the solutions of Eq. (1.1), where Xk + n(t) = 
x~(t). We will put U(t, ~) = [ul(t, e) . . . .  , u2n(t, e)], where 

u I = * =exp(e t ) [Xl ( t )+x2( t ) ]  ' U 2 u . +  1 = u . +  2 = exp( -e t ) [Xl ( t ) -x2( t ) ]  (4.4) 

and the remaining functions ui = xi(t). 
By virtue of relations (4.3) and (4.4) 

(u 1, iJul)  = exp(2Et)[(fp iJf l)  + (f2, i Jr2) = 0 

(u 2, iJu=) = exp(-2e t ) [ ( f  1, iJf j)  + (f2, iJf2) = 0 
(4.5) 

The remaining expressions for (up, brUq) are identical with (xp, brXq) or are equal to zero, since they 
contain factors (fp,/Jfq) that are equal to zero, where p e q. Hence, the matrix U(t, ~) satisfies relation 
(1.6). Hence system (1.1) with the Hamiltonian H(t, ~) = JU(t, e)U(t, ~)-1 is canonical. Obviously the 
Hamiltonian H(t, e) is continuous in e and when ~ = 0 is identical with H(t, 0) (the functions ui(t, O) 
are linear combinations of xi(t)). Since the solution ul(t, ~) is unbounded for any e > 0 as t -~ oo, the 
system is stable. The theorem is proved. 

Suppose, for example, the multiplicity of the multiplier p = exp(i%), which occurs in the proof of 
the theorem, is equal to two. Then the functions Ll(q~) and )~2(q~) have the form represented in 
Fig. 4(a). We will put H(t, ~) = H(t) + eQ(t), where Q(t) > 0. Since H(t, e) increases as e increases, the 
eigenvalues ~,p(e) decrease, and hence when ~ < 0 and ~ > 0 the graphs of )~1(9, e) and )~2(tp, e) have 
the form shown in Figs 4(b) and 4(c), respectively (in the case of a common position for a small 
perturbation the multiple eigenvalue )~k splits into two simple ones). In both cases the number of roots 
of the equation )~e(q0, e) = 1 in the neighbourhood of % is equal to two, and consequently, the system 
remains stable under this perturbation. 

We will now assume that the perturbation eQ(t) is such that the eigenvalue )~1(%, e) increases and 
)~2(%, e) decreases with e (this is possible when the matrix Q(t) is not sign definite). Then for small 
neither of the curves Ll(q~, e) nor )~2(~0, ~) intersect the straight line )~ = 1 (Fig. 4d), i.e. the multipliers 
considered converge to the unit circle (the perturbation H(t, e), constructed in the theorem, belongs 
exactly to this type). 

Suppose ~pi(i = 1, 2, ...), q~i+l > q~i is an arbitrary set of points in (0, n], in which the index function 
q(q~) of Eq. (1.1) is continuous. We will put 

S = ~,lq(q~i+l)-q(q)i)l (4.6) 
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Corollary 1. If 

S = n (4.7) 

then Eq. (1.1) is strongly stable. 
The truth of this assertion follows from the obvious fact that S ~< K ~< n, and hence Eq. (4.7) guarantees 

that the stability condition (4.1) is satisfied. 
Note that if the points q~i(i = 1,  2 . . . .  ) correspond to successive extrema of the function q(~p), then 

S = K; This assertion will be used later. 
In particular, assuming % = +0, % = 7t in (4.6), we obtain the following sufficient condition for 

stability. 

Corollary 2. If 

[q (+0) -  q(rc)l = n (4.8) 

Eq. (1.1) is strongly stable. 
It is obvious that under these conditions the index function decreases monotonically or increases in 

the range (0, ~). 
Taking into account the fact that 

q(+0) = N ( O ) + n - 2 m n ,  q(•) = N ( g ) - 2 m n  

We can write condition (4.8) in the form 

IN(0) + n -  N(n)[ = n (4.9) 

Note that whereas for a certain stability region condition (4.8) is satisfied, when there is a continuous 
change in the Hamittonian it breaks down if and only if there is a T-periodic or T-antiperiodic solution; 
in this case the strong stability also breaks down. Hence, for this region condition (4.8) is not only 
sufficient but also necessary. 

5. A N A L Y S I S  OF T H E  R E G I O N S  OF S T R O N G  S T A B I L I T Y  

Strongly stable Hamiltonians Hi(t) and H2(t) belong to one and the same stability region, if a symmetric 
matrix H(t, s) = H(t + T, s), piecewise-continuous with respect to t and continuous with respect to s, 
exists such that H(t, 0) = Hi(t) and H(t, 1) = H2(t), and when H = H(t, s) Eq. (1.1) is strongly stable 
for any s e [0, 1] [1]. 

The necessary and sufficient condition for Hi(t) and Ha(t) to belong to one and the same stability 
region was established by Gel'land and Lidskii [5]; the corresponding theorem is one of the main results 
of this theory. Nevertheless, it should be noted that the proof of the theorem is extremely laborious 
and uses fairly complex mathematical apparatus. This important results obtained by Yakubovich on 
the directed width and convexity of the stability regions [1, 9], the proofs of which are also extremely 
laborious, also touch on this problem. 

Below, this range of problems is solved using the ideas introduced above and the results obtained 
earlier. This enables us, using the minimum mathematical methods, to give a much more compact 
description of the theory and to obtain a number of new results. 
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Suppose q> q2 . . . .  , qp + l ( q l  = q(+ 0), qp+2 = q(Tt),p < n) are successive extrema of the index function 
in the range (0, rt], and F1, . . . ,  Fp + 1 e (0, re] are the corresponding intervals (q(rp) = qi when q) e Fi). 
The set of integers g = (gl . . . . .  gp), where gi = qi+ 1 - q i )  will be called a multiplier type of Eq. (1.1). 
It is clear from the results obtained in Section 3 that gi is equal to the number of eigenvalues )~i(q0) = 1 
in ((Pi, q0i + a), where all the derivatives of)%(q0) are of one sign (negative when gi > 0 and positive when 
gi < 0). For example, for the index function presented in Fig. 3, we have ql = 0 ,  q 2  = - 1 ,  q3 = 0, 
q4 = -1, and hence g = (-1, 1, -1). 

It is obvious that the strong convergence condition (4.1) is equivalent to the equality 

P 

M = ~ Igkl = n (5.1) 
k = l  

This condition is satisfied by U different multiplier types [1]. 
When there is a continuous change in the Hamiltonian the multiplier type changes if and only if a 

certain interval F i contracts to a point (q~i = (Pi+I). It is obvious that in this case the value of M decreases, 
and hence condition (5.1) breaks down. Consequently, in order that the Hamiltonians Hi(t) and Hz(t) 
should belong to one and the same stability region it is necessary that their multiplier types ~t 1 and g2 
should be identical. This condition is not sufficient; the additional condition is established by the following 
Gel'fand-Lidskii theorem [5]. 

Theorem 2. In order for the Hamiltonians Hi(t) and H2(t) with the same multiplier type to belong 
to one and the stability region, it is necessary and sufficient that their indices should be equal. 

In the original proof of this theorem [5] another definition of the index of a Hamiltonian was used. 
The proof is considerably simplified if we use this index q (see [7]). Note also that the necessity of the 
condition ql = q2 follows directly from the definition of the index. In fact, if a strongly stable curve 
H(t, s) (H(t, 0) = Hi(t),  H(t, 1) = Hz(t)) exists, the multipliers pi(s) ¢ 1. Consequently, when q0 = 0 the 
eigenvalues of problem (2.1))~i(s) ~ 1, and as a result the number of eigenvalues in range (0, 1), and 
together with it the index q(s) also, remains constant when s ~ [0. 1]. 

Hence, the stability regions are determined by the multiplier type and the index; we will denote them 
by G q [1]. 

If ~i(q0) = 1 and )~i~0(q0) > 0 in problem (2.1), then, by virtue of the evenness of the index function 
q(q0), an eigenvalue )~i(-q0) = i exists, where )~ie(-(P) < 0. Hence, if a pair of multipliers passes through 
the point 9 = 1, moving along the unit circle, the number of eigenvalues 7./c (0, 1) is changed by two. 
Taking this into account, it is easy to show that the index of a strongly stable Hamiltonian q = 2k, where 
k is an integer (it is equal to the Gel'fand-Lidskii index). It can also be shown that for any Hamiltonian 
with index q one can construct a Hamiltonian with the same multiplier type and index qi = q + 2i, where 
i is an arbitrary integer. 

In practice, the Hamiltonian H(t) is often not known exactly; in particular, in many cases one can 
only indicate its bilateral limits, i.e. 

H_(t) < H(t) < H+(t) (5.2) 

Suppose that, when H = H ( t )  and H = H+(t). Equation (1.1) belongs to one stability region G q. 
Yakubovieh's theorem on the directed width of the stability regions [1] asserts that if Eq. (1.1) with 
Hamiltonian 

H(t, s) = H_(t) + s(H+(t) - H_(t)) 

is strongly stable for all s s [0, 1], it is stable for any H(t) which satisfies condition (5.2). 
The following theorem enables us to establish the stability of system (1.1), (5.2) directly from the 

index functions q_(q)) and q+ (q0) of the Hamiltonians H_(t) and H+(t) without any additional calculations. 
Suppose Fi- and F + (i = 1 . . . . .  p + 1) are the above-mentioned intervals in which the functions 

q_((p) and q+(q0) have local extrema. Since, by our conditions, the indices and multiplier types of the 
systems considered are the same, we have q_(F~-) = q+(Fi+), but F ;  and 1-~-/, generally speaking, cannot 
have common points. We will assume, to fix our ideas, that g1 = q2 - q1 > 0, in which c a s e  ]71, F3 ,  

Fs, ... correspond to the minima and F2, F4, F6, ... correspond to the maxima of the index function. 

Theorem 3. If F[  and F + (i = 1, 3, ...) have common points % system (1.1), (5.2) is strongly stable. 
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Proof. Suppose q~i (i = 2, 4 . . . .  ) are any points f rom the ranges of F~. Since %, (P2, q)3, ... a resequent ia l  
ext rema of  the index funct ion q-(q0) of  the strongly stable Hami l ton ian  H_(t), we have 

P 

s_ = ~ [q_(cp~+ 1)-q-(~P~)l = n 
i=l 

We will show that  the equality q-(gi) = q+(~i) also holds for  even i. In fact, q-(q~i) <- q+(cpi) by virtue 
of  the fact that  H_(t) <<- H+(t);  on the o ther  hand, if q_(cpi ) < q+(cpi ) for  certain even i, then  

P 

S+ = Z [q+(~i+l)-q+(gIi)l >n 
i = 1  

which is impossible. Since, for  condit ion (5.2) q_(q~) <~ q(q0) ~< q+(q0), for  the funct ion q(q~) for  the same 
q0 i we have S = n, i.e. Eq. (1.1) is strongly stable. The  t heo rem is proved.  

Remark 1. As can be seen from the proof, under the conditions indicated, the intervals F[ and F + (i = 1, . . . ,  
p + 1) have common points. Hence, it follows from the inequality q-(q)i) <~ q+((Pi) that F + ~ F? (i = 1, 3 . . . .  ) and 
F~-e r + ( i = 2 , 4  . . . .  ). 

Remark 2. The condition of the theorem is necessary in the sense that, if it is not satisfied, an unstable Hamiltonian 
H(t) exists which satisfies inequality (5.2). In fact, suppose H(t, s) increases as s, and H(t, O) = H_(t), H(t, 1) = 
H+(t), Fi(s) (i = 1, 3 . . . .  ) are intervals corresponding to the minima of the index function q(% s). Since q(% s) 
does not decrease with s, we have Fi(s) E F7 for small s. The absence of common points on I~/and F7 denotes 
that, for certain s.  < I the interval of Fi(s) contracts to a point, and hence the corresponding equation (1.1) is not 
strongly stable (nevertheless, as shown below, when H = H+(t) it can again belong to the same stability region). 

The  stability regions G q for  which, for  any H_(t), H+(t)  ~ G q it follows f rom inequality (5.2) that  
H(t)  ~ G q are said to be directionally convex [1]. The  sufficient condi t ion for  directed convexity was 
obtained by Yakubovich [9]; in the terms employed in the present  paper  it denotes that the corresponding 
multiplier type bt contains no more  than two numbers  (which, in particular,  is necessarily satisfied when 
n = 1 a n d n  = 2). 

The  following theo rem gives the necessary and sufficient condit ion for  directed convexity of  the 
stability regions (note  that  the assertion on the directed convexity of  all the stability regions, made  in 
[7], is incorrect) .  

Theorem 4. For  the directed convexity of  the region G q it is necessary and sufficient that  

Igil > l g i - l l  or  Igi] > lg i+ l l ,  i = 2 . . . . .  p - 1  (5.3) 

Proof. Condit ion (5.3) indicates that the sequence Ig;I, (i = 1 . . . . .  p )  increases when i = 1, ... , k 
and decreases when i = k + 1 . . . .  ,p ,  where  k ~ [1, . . .  ,p) .  

Suppose H_(t) and H+(t) belong to the regions Mq which satisfy condi t ion (5.3). We will first assume 
that  gl  > 0, k is odd  or gl < 0, k is even; then  

qk+l = Z g r + q > q i ,  i - ¢k+  l 
r = t  

The  functions q_(q0) and q+(q0) satisfy the inequality q_(cp) ~ q+(q0) and have the same maximum qk; 
consequently,  a point  %+1 is obta ined at which q- (%+1)  = q+(%+1)  = qk+v When  q0 < %+1, the 
functions q_(9) and q+(q0) have the same minimum qk, and consequently q_(Cpk) = q+ ( % )  = qk for  certain 
% <  % + v  Repeat ing these discussions, we obtain a set of  points cpi (i = k, k - 1 . . . .  , 1  and i -- k + 1, 
. . . .  p + 1), at which all the ex t rema of  the functions q_(q0) and q+(q0) coincide. Consequently,  the 
condit ion of  T h e o r e m  3 is satisfied, which guarantees  the strong stability of the t-Iamiltonian H(t)  and 
thereby proves the sufficiency of  condit ion (5.3). 

If ~t 1 < 0, k is odd  or ga > 0, k is even, the p roof  is exactly the same (here  qk+ 1 < qi, i ~: k + 1). 
We will prove that  condit ion (5.3) is necessary. If it is not  satisfied, then  the inequality I gi-1 [ ~> 

I gil ~< [g/+ 11 holds for  at least one  i. We will show that  in this case we can construct  an unstable 
Hamil tonian  H(t)  which satisfies (5.2). 
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We will put H2(t, c) = H2(t) + cI2~, where H2(t) is a strongly stable second-order Hamiltonian with 
multiplier type ~t = (-1, 1) (so that the corresponding index function q(qo) has a minimum when 
q~ ~ ( %  (P2), where % and qo 2 are the coordinates of the multipliers in the upper semicircle). Since 
H2(t, c) and, consequently, q(% c) increase as c increases, the multipliers pl(c) and p2(c) move in opposite 
directions (Fig. 5). It is easy to choose H2(t, c) such that when c = c' they meet at the point cp', converge 
to the circle and again meet at the point ~0" ~ (qo', ~) when c = c"; they then continue their motion 
around the circle in the same directions. Hence, for sufficiently small ~ > 0 we have q02(c" + e) > 
cp2(c' - e). It is clear that Eq. (1.1) is unstable when c ~ (c', c") and strongly stable in a certain interval 
c ~ (c", c" + a), where g(c" + ~) = (1, -1). 

We will add to the system considered a first-order system with constant Hamiltonian 

Hl(k  ) = diag(k, k), kT  ----- (D3 e ((P2(C_), (P2(C+)) 

As a result an additional multiplier 93 = exp(iq°3) appears in the third-order system obtained with 
Hamiltonian H(t, c). It is obvious that the Hamiltonians H_(t) = H(t,  c_) and H+(t) = H(t,  c + ) have the 
same multiplier type g = (-1, 1, -1). Since the corresponding indices are equal (when c e [0, c+] none 
of the multipliers is incident at the point 9 -- 1), these Hamiltonians belong to one and the same stability 
region. Hence, the Hamiltonian H(t, c) increases as c increases and belongs to the same stability region 
when c = c_ and c = c+, but Eq. (1.1) is unstable when c E (c', c") ~ (c_, c+). 

The Hamiltonian H2(t, c) can be chosen in such a way that the indices H_(t) and H+(t) have any even 
value specified in advance. Hence, we can assert that all the stability regions with multiplier type 
g = (-1, 1, -1) are not directionally convex (i.e. those H_(t), H+(t) ~ G q are obtained for which unstable 
Hamiltonians exist, which satisfy condition (5.2)). The same conclusion also holds for the multiplier 
type ~t = (1, -1, 1) (here one must consider the Hamiltonian H2(t, c) for which cp" < cp'). By combining 
[ gi [ systems of this form, we obtain a system of order n = 3 [ gi [ with multiplier type g = (-[ gi [, [ gi ], 

- [ gi ] ) or g = ( [ gi [, -]  gi [, [ gi I ). It can be extended to the specified system by the addition of first- 
order systems with multiplier type g+ = (+ 1) or g_ -- (-1), the multipliers of which are situated in a 
corresponding way in the interval (0, rt). The system constructed has the required multiplier type and 
is not directionally convex; consequently, condition (5.3) is necessary. The theorem is completely proved. 

As can be seen, the directed convexity of the region G q is defined solely by its multiplier type and is 
independent of the index. 

Since condition (5.3) is independent of H_(t) and H+(t), theorem 4 is stronger than Theorem 3 in 
theoretical respects, but, from the practical point of view, its advantage is small. In fact, as soon as the 
multipliers of Eq. (1.1) with Hamiltonians H_(t) and H+(t) are obtained, the check of the conditions 
of these theorems is equally elementary. 

As pointed out above, in applications hamiltonians of the form H(t, Cl . . . . .  cp) are usually considered, 
where ci are certain parameters. We will denote the regions of strong stability of Eq. (1.1) in the space 
of these parameters by C~ (k = 1, 2 . . . .  ). It is obvious that the boundaries of Ck coincide with the 
boundaries of a certain region G q, but the latter may contain several regions Ck. Thus, in the single- 
parameter family H(t, c) considered when proving the theorem, the Hamiltonians H(t, c_) and H(t, c+) 
belong to one stability region G q, but different regions (sections) of Ck(c) (since when c e (c', c") 
Eq. (1.1) is unstable). 

We will assume that the Hamiltonian H(t, cl, . . . ,  Cp) is continuous in all the parameters. We will call 
the region Ck directionally convex with respect to the parameter Cq if it follows from the condition 

1 .. ce), H(t, cl, 2 Ck that H(t, cl, ci, ... , Cp) e Ck for all Cq ~. (Cq, Cq). H(t, cl . . . . .  Cq,. , . . . , C q , . . . , C p )  E . . . ,  1 2 

Theorem 5. If the Hamiltonian H(t, ca . . . . .  Cp) increases or decreases with respect to the parameter 
Cq, the stability regions Ck are directionally convex with respect to Cq. 
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Proof. We will assume the opposite• Then, for certain c~(k ¢ q) we obtain a section [c~, c 2] such that 
1 . . . .  ~" 2 • [c,, Co) s Ck, the point co lies on the boundary of region Ck, and the points of the section [Co, %) he 

• - ' '  1 2 . . . . .  reside or on the boundary of Ck. Hence, for any c ~ [Cq, Cq] all the mult~phers he on the unit circle. We 
can assume, without loss of generality, that the Hamiltonian H(t, cl . . . . .  Cp) increases with % in which 
case the index function q(% Cq) also increases. When Cq = Co the integral of Fi, corresponding to a certain 
minimum qi of the function q(% Cq), contracts to the point % Suppose that, at the point cpi, p and q 
multipliers meet, moving in opposite directionsl The corresponding elementary divisors are simple 
(otherwise, as shown in Section 3, when c > Co some multipliers will not lie on the circle). Hence, they 
continue their motion along the circle in the same directions, so that for sufficiently small e Eq. (1.1) 
is strongly stable when ci e [Co - e, Co) and ci e (co, co - e]. However, when crossing the point co, the 
multiplier type of the system changes (the index at the point q0i increases by an amountp  + q). Hence, 
the points Co - e and Co + e must belong to different stability regions Gqu and, consequently, cannot 
belong to one region Ck- The contradiction obtained proves the theorem. 

Hence, unlike the region G q, all the regions Ck possess the property of directional convexity. 

6. T H E  T H E O R Y  OF P A R A M E T R I C  R E S O N A N C E  AND 
P A R A M E T R I C  S T A B I L I Z A T I O N  

Parametric oscillations of a canonical system are usually described by an equation of the form 

Ji~ = H(cot, g)x (6.1) 

where H(03t) = H(03t + 2n), 03 is the frequency of parametric excitation and IX is a parameter 
characterizing its intensity. The stability regions in the IX, 03 plane represent sets of points, to which 
strongly stable Hamiltonians H(03t, IX) correspond. On the boundaries of these regions none of the 
multipliers lie on the unit circle, but Eq. (6.1) is not strongly stable. 

There is a vast literature devoted to developing constructive (numerical and analytical) methods for 
finding the stability regions of Eq. (6.1) (see, for example, [1, 10, 11]). On the other hand, the number 
of general qualitative assertions regarding the stability regions is limited, and the majority of them were 
obtained by asymptotic methods assuming the parameter IX to be small [11]. Below we obtain some 
general results regarding the stability regions, that are free from this limitation. Putting z = cot, we reduce 
(6.1) to the form 

Jx' = H('C, IX, co)x 

H(x, Ix, co) = 03-1H(x, IX), H(x, g) = H(x  + 2n, Ix) (6.2) 

where the prime denotes differentiation with respect to "c. 
We will assume that H('c, g) > 0 when z ~ [0, 2hi and ~t s [0, g0], and H(z, 0) = /40  is a constant 

matrix. Since H 0 > 0 the eigenvalues of the matrix J-IH0 are imaginary [1], and we will denote them by 
+ i 0 3 k ( O  < 031 ~ " "  ~ (On)" When g = 0 Eq. (6.1) is strongly stable, with the exception of the points [4]. 

CO --'-- 03pkq = (03p + 03k)/q' p, k = 1 . . . .  , n; q = 1, 2 . . . .  (6.3) 

In the case of a common position, the points 03pkq are different. When co changes at the points 
co = co ~ the multiplier type of the system changes, and when p = k and for even q the index of the • ~o . . . .  

Hamlltoman also changes (the multlphers pass through the point p = 1). Hence, the intervals of the 
co axis adjoining the point mpN correspond to different stability regions G q and, consequently, to different 
stability regions in the g, 031 plane (for example, to the regions C j2 and C23 in Fig. 6, where 031, 032 and 
033 are neighbouring points of 03p~q on the co axis). 

The following assertion is a direct consequence of Theorem 5. 

Corollary 3. If, for a certain g, the points 03'(g) and m"(g) belong to one stability region, they also 
belong to the whole section [03'(g), 03"(p)]. 

In fact, the Hamiltonian H(z, g, 03) decreases with respect to 03, and hence the stability regions are 
directionally convex with respect to 03. 

The practical importance of this result is as follows. To construct stability regions in the g, 03 plane 
one usually calculates their boundaries coW-(g) and 03/(g) (Fig. 6), adjoining the points e0pka of the co axis; 
in what follows we will assume that the sets of points between 03~-(g) and 037(g) represent instability 



Stability of linear canonical systems of differential equations with periodic coefficients 195 

C23 + 

), 

0 g 
Fig. 6 

regions, while the sets of points between coJ-(g) and (07+ l(g) represent stability regions. This approach 
needs justification, since, generally speaking, from nowhere does it follow that "islands" of instability 
lie between the boundaries of the stability regions. Corollary 3 just gives the necessary basis for the 
case H(mt, g) > 0. 

As regards the instability regions, as was shown in [11], for small g, Eq. (6.1) is in fact unstable for 
all co e (coT(g), (coS(g)). A detailed analysis, which is outside the scope of this paper, shows that, in 
general, stability regions, which adjoin a certain boundary (like, for example, the point K in Fig. 6), lie 
between these boundaries. Here we have a scenario, described when proving Theorem 4, when a strongly 
stable equation becomes unstable as the Hamiltonian increases, and then returns to the same stability 
region. 

In applications, one often considers parametric oscillations of systems described by the following 
second-order vector equation 

(M(cot, g)y)" + C(mt, g)y  = 0, y ~ R" 

C(o~t, g) = C0(g ) + gCl(la, cot) = C(cot + 2g, g), M(cot, It) = M(cot + 2•, g) 
(6.4) 

where M(mt, g) and C(mt, g) are symmetric matrices, where M(mt, g) > 0 and C0(g) > 0, while the 
average values of the elements of the matrix Cl(cot ) are equal to zero in the interval [0, T). 

By making the replacement y = Xl, M~ = x2, Eq. (6.4) can be reduced to the form (6.1), where 
x = x~, x2) and H(mt, g) = diag[Mq(mt, g), C(mt, ~t)], and hence all the results obtained above remain 
valid. However, a special form of this Hamiltonian enables us to establish certain additional facts. 

First of all, we note that the use of the condition H(mt, g) > 0 above is unnecessary. The fact is that 
everywhere above the condition H(t) > 0 is only necessary to the extent that it guarantees that the 
following equality is satisfied 

T 

I(Hx, x)dt > 0 

o 

where x(t) is the solution of Eq. (1.1), which satisfies the relation x(T) = 9x(0), [91 = 1. Nevertheless, 
in the case considered, it is sufficient for this purpose simply for the matrix M(cot, g) to be positive definite. 
In fact, taking Eq. (6.4) into account, we obtain 

T T 

f ( . x .  x)dt = 
o o 

(6.5) 

By virtue of the relations y(T) = 9y(0), ~(T) = 9y(0), [ 9 [ = 1 the term outside the integral is equal to 
zero, and as a result the required inequality is satisfied when y(t) ~ const. Hence, when g increases the 
stability regions remain directionally convex with respect to m, even when the inequality C(mt, g) > 0 
breaks down. 
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Note also that the specific feature of Eq. (6.4) enables a number of assertions on the behaviour of 
certain boundaries of the stability regions to be established [12, 13]. 

In conclusion, we will consider the problem of the parameteric stabilization of an unstable system 

+ [ C  0 -t- IXo)2C1 -t- g0)Zc2( f .0 t ) ]y  = 0,  y e R n (6.6) 

where C1 > 0, while the mean values of the elements of the matrix C2('0 = C2(z + 2n) are equal to 
zero in the range [0, 2n]. 

We will assume that the matrix Co is not positive definite. Then Eq. (6.6) is unstable when Ix = 0. As 
is well known, when Ix ;~ 0 and for sufficiently large co, Eq. (6.6) may be stable; this effect has come to 
be called high-frequency parametric stabilization. Existing criteria of the stability of Eq. (6.6) (see, for 
example, [14, 15]) were obtained by asymptotic methods assuming that the parameter bt is small. Using 
the results obtained above, we can establish the exact boundaries of the region of parametric stabilization 
in the Ix, co plane. 

Assuming "c = cot, we reduce Eq. (6.6) to the form 

y " +  [(1)-2C0 q- [J.C 1 -I- [ . I .C2(x)]y = 0 (6.7) 

As was shown in [11], for sufficiently large co and small bt, Eq. (6.7) belongs to the same stability regions 
as the equation 

y"+lxCly  = 0 (6.8) 

We will consider the corresponding boundary-value problems (2.1) (/4 = diag(I, BC1), T = 2n/co, 
m = 0 by virtue of the fact that H > 0) with periodic boundary conditions (q0 = 0) and antiperiodic 
boundary conditions (q0 = n). The least positive eigenvalues of these problems are equal to 

a = CO (6 .9 )  = 0 C0r-'n,/ix 2c% d-g 

respectively, where c0n is the greatest eigenvalue of the matrix C1. For small g we have 

~ , f> l ,  k ~ > l  (6.10) 

Hence, the number of eigenvalues in the range (0, 1) is N(0) = N(n) = 0. Consequently, in the case of 
condition (6.10) the stability condition (4.9) is satisfied, where the index of the stabilized system 
q = N(0) = 0. Taking into account the fact that q(+0)  = q + n = n, q(n) = 0, we obtain that the index 
function q(~p) decreases monotonically in the range (0, n). 

Hence, inequalities (6.10) serve as the conditions for parametric stabilization of Eq. (6.6). When Ix 
and o~ vary continuously, the strong stability breaks down, provided k~ (Ix, 0~) = 1 and k~ (g, c0) = 1; 
the equalities determine the boundaries of the region of parametric stabilization. 

Assuming Co < 0, we will consider this region in the Ix, a = 1/o) 2 plane. As can be seen from 
Eq. (6.7), when a increases the Harniltonian decreases, and consequently the index function q(e0, a) 
also decreases with a. Since q(% a) decreases as ~p in the range (0, n), the stability breaks down when 
the interval F1 = [0, %(a)) contracts to zero. Then the multiplier pl(a) = exp(igi(a)) = 1, and hence 
on this boundary Eq. (6.7) has the periodic solution x(x) = x('c + 2n) (i.e. kiP(g, a) = 1). Suppose 
W(% Ix, a) is the matricant of the corresponding equation (1.1); the existence of a 2n-periodic solution 
implies that 

detl]W(2rt, Ix, a) - 12.11 = 0 (6.11) 

Hence, for fixed IX the upper limit a+(ix) of the region of parametric stabilization is the least root of 
Eq. (6.11). 

When a decreases the index function q(% a) increases, and hence the stability of the stabilized system 
may break down, provided the interval Fn = (%@), n] contracts to a point n. Then the multiplier 
Pn@) = -1, and hence Eq. (6.6) has the antiperiodic solution x(" 0 = -x('c + 2n) (k~(ix, a) = 1). 
Consequently, the lower boundary a_(tx) of the region of parametric stabilization is the least root of 
the equation. 

detltW(4n, Ix, a ) -  12,1[ = 0 (6.12) 
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For small g Eq. (6.12) has no roots, and hence 8_(g) = 0. 
As an example we will consider the well-known problem of the parametric stabilization of the upper 

equilibrium position of a pendulum [14]. The corresponding equation reduces to the form 

x"+ (-e+l. tcos 'C)x = 0; e = g/(lo~2), g = a/l  (6.13) 

where x, m and l are the angular coordinate, the mass and length of the pendulum, g is the acceleration 
due to gravity, and a and co are the amplitude and frequency of the oscillations of the point of suspension. 

In the case considered 

Xl('~, g, E) x2('l:, ~t, E) 
W(x, g, e) = x'l(~, ~t, e) x'2(x, g, e) 

where xl('c, g, e) and xa('c, g, 8) are the solutions of Eq. (6.13) with initial condition x(0) = 1, x'(0) = 0 
and x(0) = 0, x'(0) = 1, respectively. 

According to the results obtained, the boundaries of the region of parametric stabilization e+ (g) and 
t_(g) are found from Eqs (6.11) and (6.12). These equations can be simplified by using the form of the 
periodic coefficient. Precisely because cos'~ is even, the periodic solutions are even or odd, i.e. they are 
identical with xl('c, g, e) or x2(z, g, e), respectively. Hence, when condition (6.11) is satisfied x{(21t, g, 
e) = 0 orx2(2n, g, e) = 0. Taking into account the fact that cos'c decreases in the range (0, n) and increases 
in the range (n, 2n), it can be shown that the first of these equations has the least root e(g). Finally, by 
virtue of the fact that Xl('C, g, e) = xf f2n - z, g, ~) this is equivalent to the equationx~(n, g, 8) = 0, which 
also serves to define the upper boundary 8+ (g) of the region of parametric stabilization. It can similarly 
be shown that the lower boundary e_(g) is given by the equation x{(2rt, g, 8) = O. 

In Fig. 7 we show the boundaries 8+ (g) ad 8_(g) of the region of stability of Eq. (6.13), obtained using 
these equations. As can be seen, when g < ~t, = 0.46 the upper position of the pendulum is stable for 
all ~0 > (8+(g)) -1/2, whereas when g > g .  an increase in 0~ initially stabilizes the system and then, when 

(co > e_(g)-l/2), it is destabilizes the system. 
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